Wednesday, September 22, 2010

back to c

re-visiting C so in a couple of nights during Ramadan while waiting for suhur. I played with the anti-prime seq problem. The problem: in a sequence of integers [n,m] where 1<=n,m<=1000, determine whether the sum of each sub-sequence of length k where 2<=k<=10 is a composite integer. I started recursively but it turned out a simple while loop will do.


/**
 12 Ramadan 1431
 08/22/2010
 ***/
#include 
#include 
#include 
#include 
int init_array(int array[],int n,int m,int d);
int find_anti_prime_sequence(int array[],int i,int candidate_to_not_use,int n,int m,int d,int length);
int find_next_solution(int array[],int index,int used,int n,int m,int d,int length);
int is_anti_prime(int array[],int from,int to,int d);
int is_prime(int n);
void dump_array(const char * arrayname,int * array, int length); 
//int * numbers_ptr = NULL;
int main (int argc, const char * argv[]) {
    int i = 0;
 int n = 1;
 int m = 1000;
 int d = 10;
 int length = m - n  + 1;
 int result = 0;
 int * array = NULL;
 int temp = 0;
 //printf("enter n, m and d (0 0 0 to quit:)");
 scanf("%d%d%d",&n, &m, &d);
 while (n>0) {
  length = m - n +1;
  result = 0;
  array = (int *) malloc(sizeof(int)*length);
  temp = n;
  for (i=0; i< length; i++) {
   array[i] = temp++;
  }
  for (i=0; i< length; i++) {
   array[i] = 0;
  }
  array[0] = n;
  result = find_anti_prime_sequence(array, 0, 0, n, m, d, length);
  if (result) {
   fprintf(stdout,"%d", array[0]);
   for (i=1; i< length; i++) {
     fprintf(stdout,",%d" , array[i]);
    }
    fprintf(stdout,"\n");
   }
  else{
   fprintf(stdout,"No anti-prime sequence exists.\n");
  }  
  fflush(stdout);
  fflush(stderr);  
  free(array);
  n = 0;m=0;d=0;
  //printf("enter n, m and d (0 0 0 to quit): ");
  scanf("%d%d%d",&n, &m, &d); 
 }
    return 0;
}
int init_array(int array[],int n,int m,int d)
{
 int i=0;
 int candidate = 0;
 array[0] = n;
 
 for (i=1; i 0) {
   array[i] = candidate;
  }
  else {
   return 1;/* break or return ? we probably should and try all values of n for the first case ?*/
  }
  
 }
 return 1;
}
/***
 * This is the recursive backtracking algorithm and the iterative one too.
 *
 *******/
int find_anti_prime_sequence(int array[],int i,int candidate_to_not_use,int n,int m,int d,int length)
{
 int candidate = 0;
 if (i<0) {
  return 0;
 }
 if (i>=length-1 /* && candidate_to_not_use == 0 */) {
  return 1;
 }
 //dump_array("main array", array, i);
 //candidate = find_next_solution(array, i, candidate_to_not_use, n, m, d,length);
 while(1)
 {
  if(i<0)
   return 0;
  if(i>= length - 1)
   return 1;
  candidate = find_next_solution(array, i, candidate_to_not_use, n, m, d,length);
  if(candidate >0)
  {
   array[++i] = candidate;
   candidate_to_not_use=0;
  }
  else
  {
   
   if(i==0 && array[i] < m)
   {
    array[i]++;
    candidate_to_not_use =0;    
   }
   else
   {
    candidate_to_not_use = array[i];
    i--;
   }
  }  
 }
 /*if (candidate > 0) {
  array[i+1]=candidate;
  return find_anti_prime_sequence(array,i+1,0,n,m,d,length);
  }
  else
  {
  if (i ==0 ) {
  if (array[i] < m) {
  array[i]++;
  return find_anti_prime_sequence(array,i,0,n,m,d,length);
  }
  }
  return find_anti_prime_sequence(array,i-1,array[i],n,m,d,length);
  }*/
}
int find_next_solution(int array[],int index,int used,int n,int m,int d,int length)
{
 int candidate = 0;
 int i =0; 
 int from = 0;
 int to = index + 1;
 if (index + 1 < d) {
  from = 0;
 }
 else {
  from = index - d + 2;
 }
 if (to >= length) {
  to = length -1;
 }
 if(used > 0){
  n=used+1;
 }
 while (n<=m) {
  for (i=0; i < = index; i++) {
   if (array[i]==n /* || n <= used */) {
    break;
   }
  } 
  if (i>index)
  {
   array[to]=n;
   // dump_array("array: ", array, length);
   // fprintf(stderr, " -- %d %d\n",from  , to); 
   if (is_anti_prime(array, from, to,d)) {
    candidate = n;
    break;
   }
  }
  n++;
 }
 return candidate;
}
int is_anti_prime(int array[],int from,int to,int d)
{
 int is_seq_prime = 0;
 int current_d= 2;
 int i = 0;
 int j = 0;
 int sum = 0;
 while (current_d < = d) {
  for (i=from; i < to; i++) {
   int limit = i+current_d-1;
   if (limit > to) {
    limit = to;
   }
   for (j=i; j < = limit; j++) {
    sum += array[j];
   }
   is_seq_prime =  is_prime(sum);
   if(is_seq_prime)
   {
    break;
   }
   sum = 0;
   
  }
  if (is_seq_prime) {
   break;
  }
  current_d++;
 }
 return !is_seq_prime;
}

int is_prime(int n)
{
 int i = 3;
 int square_root = 0;
 if (n%2 == 0) {
  return 0;
 }
 square_root = sqrt(n);
 i = 3;
 for (i; i < = square_root; i++) {
  if (n%i == 0) {
   return 0;
  }
 }
 return 1;
}
void dump_array(const char * arrayname , int * array,int length)
{
 int i =0;
 fprintf(stderr, "dum_array %s: ",arrayname);
 for (i=0; i < length; i++) {
  fprintf(stderr, "%d " , array[i]);
 }
 //fprintf(stderr, "\n");
}


No comments:

Post a Comment